	GROUP NAME	PI	CONTACT EMAIL	DEPARTMENT	RESEARCH LINES	GROUP WEBSITE
ENERGY STORAGE		Arias Ergueta, Pedro Luis	pedroluis.arias@ehu.eus	Chemical and Environmental Engineering	1. Thermochemical energy storage 2. Power to X (X = gas, liquid) 3. Hydrogen production using thermochemical cycles	https://www.ehu.eus/en/web/supren
	MATERIALS + TECHNOLOGIES (GMT)	Eceiza Mendiguren, Maria Aranzazu	arantxa.eceiza@ehu.eus	Chemical and Environmental Engineering	Development of capacitors based only in polymeric materials (so called all polymer dielectrics) for energy storage applications.	https://www.ehu.eus/en/web/gmt/
	CHEMICAL TECHNOLOGIES FOR ENVIRONMENTAL SUSTAINABILITY (TQSA)	González Velasco, Juan Ramón	juanra.gonzalezvelasco@ehu.eus	Chemical Engineering	Innovations in CO2 methanation: novel catalysts and process integration (CO2SNG-CATPRO)	https://www.ehu.eus/es/web/tqsa/home
	IENEDI (Energy in	Martín Escudero, Koldobika	Koldobika.martin@ehu.eus	Energy Engineering	The study and development of Thermal Energy Storage systems by means of Phase Change Materials (PCMs) for buildings. We are currently investigating the development of new solutions to improve the auxiliary thermal facilities (like heat exchangers, storage tanks or air conditioning) by means of PCMs in some of our projects. The main activities of the research team include: 1. Characterization of the thermal properties and the thermal behaviour of Phase Change Materials (PCMs). 2. Development of new characterization methodologies, suitable to assess the behaviour of PCMs. 3. Design, production and characterization of Thermal Storage System prototypes based on PCMs. 4. Development of new PCMs. Characterization and assessment of their behaviour 5. Development of predictive tools to attain a reliable design of solutions containing PCMs. The approach to produce the tools is based on the modelling of the thermal behaviour of PCMs, and the modelling of the thermal behaviour of solutions containing Phase Change Materials	https://www.ehu.eus/en/web/enedi/enedi-group
	NANOPHYSICS LABORATORY	Ortega Conejero, Jose Enrique	Enrique.ortega@ehu.es	Applied Physics I	1. Atomic scale Gas/surface chemistry in ambient pressure conditions. "Green" surface chemistry phenomena, such as the CO2 reduction and conversion into alcohols and fuels. Use of surface-sensitive techniques, such as Scanning Tunneling Microscopy (STM) and X-ray photoemission (XPS),to operate in ambient pressure conditions. 2. Electrocatalysis at the atomic scale: from vacuum to operando. Explore basic problems of electrocatalysis on crystal surfaces, such as CO2 reduction and alcohol synthesis, combining standard ultra-high-vacuum characterization, Ambient Pressure XPS, and an electrochemical cell.	https://cfm.ehu.es/nanophysicslab/
	MATERIALS AND SOLID- STATE CHEMISTRY	Rojo Aparicio, Teófilo	teo.rojo@ehu.eus	Organic and Inorganic Chemistry	1. Advanced Materials for sodium-based batteries and hybrid capacitors	